הוכחת משפט בגיאומטריה: אם שני ישרים מקבילים נחתכים על-ידי ישר שלישי, אזי כל שתי זוויות פנימיות מתחלפות הן זהות.
הוכח את המשפט: אם שני ישרים מקבילים נחתכים על-ידי ישר שלישי, אזי כל שתי זוויות פנימיות מתחלפות הן זהות.
מוכיחים עבור זוג זויות פנימיות מתחלפות אחד, שאר השיוויונות ניתנים להוכחה בדרך דומה.
מוכיחים עבור זוג זויות פנימיות מתחלפות אחד, שאר השיוויונות ניתנים להוכחה בדרך דומה.
נתון: שני ישרים מקבילים: CD||EF , ישר AP חותך את המקבילים בנקודות O, P
צ"ל: COP = ∡OPF ∡
טענה | # | נימוק |
---|---|---|
∡COP+∡DOP = 180º | (1) | סכום שתי זוויות סמוכות הוא 180º |
∡OPF+∡DOP = 180º | (2) | סכום שתי זוויות פנימיות וחד-צדדיות בישרים מקבילים |
∡COP+∡DOP = ∡OPF+∡DOP | (3) | שני גדלים השווים לגודל שלישי שווים ביניהם, טענות 1 ו- 2 |
COP = ∡OPF ∡ | (4) | חישוב מטענה |