בעיה פתורה בגיאומטריה – אנכים לשוקיים במשולש ש"ש

Spread the love
בעיה פתורה בגיאומטריה - אנכים לשוקיים במשולש שווה שוקיים

בעיה פתורה בגיאומטריה – אנכים לשוקיים במשולש שווה שוקיים

נתון משולש שווה שוקיים AB = AC
BD ו- CE הם גבהים לשוקיים במשולש, BD מאונך ל- AC, ו- CE מאונך ל- AB

א. נוכיח שמשולשים BDC ו- CEB חופפים:
שני המשולשים הם ישרי זווית לפיכך נדרשים עוד שני שיוויונים במשולשים להוכיח חפיפתם.
זהות ראשונה: זווית CBE = זווית BCD – זוויות בסיס במשולש שווה שוקיים ABC שוות
זהות שניה: BC = BC – צלע משותפת
מכאן: משולשים BDC ו- CEB חופפים
מ.ש.ל א'

ב. נוכיח ש- DE||BC באמצעות משפט תאלס הפוך:
שני ישרים (BC, DE) המקצים על שוקי זווית (BAC) קטעים פרופורציונים (AE/BE = AD/DC) , מקבילים זה לזה.

(1) AB = AC – נתון
(2) BE = CD – נובע מהחפיפה שהוכחה ב- א
לכן:
(3) AE = AD , נובע מ- (1) ו- (2): חיסור גדלים שווים מגדלים שווים נותן גדלים שווים
AE/BE = AD/DC נובע מ- (2) ו- (3) חלוקת גדלים שווים מגדלים שווים נותן מנות שוות
לכן
DE||BC – משפט תאלס הפוך:
שני ישרים (BC, DE) המקצים על שוקי זווית (BAC) קטעים פרופורציונים (AE/BE = AD/DC) , מקבילים זה לזה.
מ.ש.ל ב

ג. נוכיח ש: AE*AC = AD*AB
נוכיח דימיון משולשים ABC, AED
זווית ABC = זווית AED – מתאימות מקבילים DE||BC (הוכח בסעיף ב) , חותך AB
זווית ACB = זווית ADE – מתאימות מקבילים DE||BC (הוכח בסעיף ב) , חותך AC
זווית A = זווית A – משותפת
מכאן משולשים ABC, AED דומים – משולשים ששלוש זוויותיהם (או שניים מהזוויות) שוות, דומים
מהדימיון נובע: AE/AB = AD/AC – יחסי צלעות מתאימות במשולשים דומים
מכאן AE*AC = AD*AB
מ.ש.ל

salome

כתיבת תגובה

האימייל לא יוצג באתר. שדות החובה מסומנים *

אתר זה עושה שימוש באקיזמט למניעת הודעות זבל. לחצו כאן כדי ללמוד איך נתוני התגובה שלכם מעובדים.